A Cacheto Bash for 9P

Geoff Collyer

Bell Laboratories
Murray Hill, New Jersey 07974
geoff@plan9.bell-labs.com

Charles Forsyth

Vita Nuova
www.vitanuova.com
forsyth@vitanuova.com



Why cache?

Plan 9 on Blue Gene:
— thousands of IO and CPU nodes (I0:CPU ratio is typically 1:32 or 1:64)
— scientific programs (eg, SPMD)
— system booting and initialisation

all attached to ...
... a single shared file server



=l e E303T Unhed Fistors Dyfieat ine.

oucH!! BRAIN
ovERLOAD I IT'S







Can cache?

Many processes are doing roughly the same thing on a small, fixed set of files

Not massive files (eg, scientific 1/0).
Not streamed data.
Not system services (synthetic files).

Essentially files providing infrastructure: eg, programs, libraries, configuration,
parameters

It is important to cachevalid accesses.
(Example: Python’s search for libraries fine for one instance, but 17 hours for
thousands!)



Cachestructure
We modelled it on existingfs

FS — Cache— FS

A user-level program acts as a file server to its clients, and a client to a remote file
server, providing the cache in between.

It transforms a single stream of 9P traffic.
It answers the clients itself, whenever it can.
When it cannot answer, it

delegates the request to the server

returns the reply to the client
alsocaches the result.

Meta-data is cached as well as data (untks, including path names.



9P requests

The work to do is defined by the set of 9P requests:

Tver si on tag msize version
Taut h tag afid uname aname
Tatt ach tag fid afid uname aname

start a new session
optionally authenticate subsequent attaches
attach totheroot of afiletree

Twal k tag fid newfid nwname nwname*wnamewalk up or down in thefiletree

Topen tag fid mode

Tcr eat e tag fid name perm mode
Tr ead tag fid offset count

Twri t e tag fid offset count data
Tcl unk tag fid

Trenmove tag fid

Tstat tag fid

Twst at tag fid stat

Tf | ush tag oldtag

How must the cache respond to each?
What data types are needed?

open afile (directory) checking per missions
createanew file

read data from an open file

write data to an open file

discard afiletreereference (ie, close)
remove a file

retrieve a file’s attributes

set a file’s attributes

flush pending requests (eg, on interrupt)



Fid handling

A fid represents an active file, and we aim to reduce fid usage on server (hence file
descriptor usage), with many client fids sharing a single fid on the server.

There are two sets of fids:

e one built by the client processes (each actuallggportfsrepresenting many
clients on a CPU server), managed by the client

e One setrepresenting active files on the server, managed by the cache
Fscfsmust map from the first set d¢fidsto the second set @Fids

Data types
IOmode :: ROW ORW
Fid fid: u32int qid: Qid path: Path opened: SFid mode: IOmode
SFid fid: u32int
Path :: name: string qid: Qid parent: Path kids: set of Path (Validvalid)
Valid :: sfid: SFid file: optional File
Invalid :: reason: string
File open: IOmode-SFid dir: Dir clength: u64int cached: sparse array of Data
Client :: fids: u32int-Fid root: Path

Client requests contain integids, that are mapped tbids, that refer to théPath
tree node resulting from a walk from tieot.

Active Fids for the same Patbharean integer fid referring to that path on the
server.
That is found by th&Fidstored in the Path; th8Fiditself is shared.



Building the Path

1. Tattachfid
Delegate to the server, replacing the incoming (local) fid by a new server fid.
Create an empty Path tree for theot, associated with the new SFid. The
Path is also associated wifill.

2. Twal k fidsg - - sp-1
Start from Path associated wifid, and attempt to walk the sequence of
names.
If the walk succeeds locally, and the resulting Path has an SFid, reply to the
client.

If the walk fails with an Invalid entry, return an appropriate error.

Otherwise, delegate to the server walking to anew fid on the server.
Update the Path tree (add each successfto the tree, and record an Invalid
entry on an error).

3. Tcreatefid name - - -
There’s a directory Path associated with
Delegate to the server, usingkneof that Path’s SFid.
Add a new child Path associatimgmeandfid, wherefid is now open on that
new SFid.

4. Tcl unk fid clunk the correspondinfid locally (discards the Fid), and reply
to the client.

Paths and SFids are reference counted: clunking Fids locally might result in
release of SFid and clunk of its server fid.



Results

When many processes are making identical file system requests over a given inter-
val, fscfsaggregates them into single requests at the server.

On an 10 node, for an interval from initial connection to the file server, until its 64
CPU clients were ready to go:

Op IO node Server
Tver si on 1 1
Tattach 1 1
Twal k 7,855 56
Topen 1,486 77
Tr ead 6,823 133
Tcl unk 4,749 0
Tst at 4,224 4,224

bytes read 19,913,992 462,722

Ron can run his benchmarks, and a new sad tale begins!



