
A Cache to Bash for 9P

Geoff Collyer

Bell Laboratories
Murray Hill, New Jersey 07974

geoff@plan9.bell-labs.com

Charles Forsyth

Vita Nuova
www.vitanuova.com

forsyth@vitanuova.com



Why cache?
Plan 9 on Blue Gene:

� thousands of IO and CPU nodes (IO:CPU ratio is typically 1:32 or 1:64)
� scientific programs (eg, SPMD)
� system booting and initialisation

all attached to ...
... a single shared file server







Can cache?
Many processes are doing roughly the same thing on a small, fixed set of files

Not massive files (eg, scientific I/O).
Not streamed data.
Not system services (synthetic files).

Essentially files providing infrastructure: eg, programs, libraries, configuration,
parameters

It is important to cacheinvalid accesses.
(Example: Python’s search for librariesÒ fine for one instance, but 17 hours for
thousands!)



Cache structure
We modelled it on existingcfs:

FS� Cache� FS

A user-level program acts as a file server to its clients, and a client to a remote file
server, providing the cache in between.

It transforms a single stream of 9P traffic.

It answers the clients itself, whenever it can.

When it cannot answer, it

delegates the request to the server
returns the reply to the client
alsocaches the result.

Meta-data is cached as well as data (unlikecfs), including path names.



9P requests
The work to do is defined by the set of 9P requests:

Tversion tag msize version start a new session
Tauth tag afid uname aname optionally authenticate subsequent attaches
Tattach tag fid afid uname aname attach to the root of a file tree
Twalk tag fid newfid nwname nwname*wnamewalk up or down in the file tree
Topen tag fid mode open a file (directory) checking permissions
Tcreate tag fid name perm mode create a new file
Tread tag fid offset count read data from an open file
Twrite tag fid offset count data write data to an open file
Tclunk tag fid discard a file tree reference (ie, close)
Tremove tag fid remove a file
Tstat tag fid retrieve a file’s attributes
Twstat tag fid stat set a file’s attributes
Tflush tag oldtag flush pending requests (eg, on interrupt)

How must the cache respond to each?

What data types are needed?



Fid handling
A fid represents an active file, and we aim to reduce fid usage on server (hence file
descriptor usage), with many client fids sharing a single fid on the server.

There are two sets of fids:

" one built by the client processes (each actually anexportfsrepresenting many
clients on a CPU server), managed by the client

" one set representing active files on the server, managed by the cache

Fscfsmust map from the first set ofFids to the second set ofSFids.

Data types

IOmode :: R  W  RW
Fid :: fid: u32int qid: Qid path: Path opened: SFid mode: IOmode
SFid :: fid: u32int

Path :: name: string qid: Qid parent: Path kids: set of Path (Valid  Invalid)
Valid :: sfid: SFid file: optional File
Invalid :: reason: string

File :: open: IOmode¦SFid dir: Dir clength: u64int cached: sparse array of Data

Client :: fids: u32int¦Fid root: Path

Client requests contain integerfids, that are mapped toFids, that refer to thePath
tree node resulting from a walk from theroot.

Active Fids for the same Pathsharean integer fid referring to that path on the
server.
That is found by theSFidstored in the Path; theSFid itself is shared.



Building the Path
1. Tattach f id

Delegate to the server, replacing the incoming (local) fid by a new server fid.
Create an empty Path tree for theroot, associated with the new SFid. The
Path is also associated withfid.

2. Twalk f ids0
. . . sn − 1

Start from Path associated withfid, and attempt to walk the sequence of
names.
If the walk succeeds locally, and the resulting Path has an SFid, reply to the
client.
If the walk fails with an Invalid entry, return an appropriate error.

Otherwise, delegate to the server� walking to a new fid on the server.
Update the Path tree (add each successfulsi to the tree, and record an Invalid
entry on an error).

3. Tcreate f id name . . . 

There’s a directory Path associated withfid.
Delegate to the server, using acloneof that Path’s SFid.
Add a new child Path associatingnameandf id, wherefid is now open on that
new SFid.

4. Tclunk f id clunk the correspondingfid locally (discards the Fid), and reply
to the client.

Paths and SFids are reference counted: clunking Fids locally might result in
release of SFid and clunk of its server fid.



Results
When many processes are making identical file system requests over a given inter-
val, fscfsaggregates them into single requests at the server.

On an IO node, for an interval from initial connection to the file server, until its 64
CPU clients were ready to go:

Op IO node Server
Tversion 1 1
Tattach 1 1
Twalk 7,855 56
Topen 1,486 77
Tread 6,823 133
Tclunk 4,749 0
Tstat 4,224 4,224

bytes read 19,913,992 462,722

Ron can run his benchmarks, and a new sad tale begins!


